Extrasynaptic vesicle recycling in mature hippocampal neurons.
نویسندگان
چکیده
Fast neuronal signalling relies on highly regulated vesicle fusion and recycling at specialized presynaptic terminals. Recently, examples of non-classical neurotransmission have also been reported, where fusion of vesicles can occur at sites remote from conventional synapses. This has potentially broad biological implications, but the underlying mechanisms are not well established. Here we show that a complete vesicle recycling pathway can occur at discrete axonal sites in mature hippocampal neurons and that extrasynaptic fusion is a robust feature of native tissue. We demonstrate that laterally mobile vesicle clusters trafficking between synaptic terminals become transiently stabilized by evoked action potentials and undergo complete but delayed Ca(2+)-dependent fusion along axons. This fusion is associated with dynamic actin accumulation and, subsequently, vesicles can be locally recycled, re-acidified and re-used. Immunofluorescence and ultrastructural work demonstrates that extrasynaptic fusion sites can have apposed postsynaptic specializations, suggesting that mobile vesicle recycling may underlie highly dynamic neuron-neuron communication.
منابع مشابه
A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons
Synapse-specific vesicle pools have been widely characterized at central terminals. Here, we demonstrate a vesicle pool that is not confined to a synapse but spans multiple terminals. Using fluorescence imaging, correlative electron microscopy, and modeling of vesicle dynamics, we show that some recycling pool vesicles at synapses form part of a larger vesicle "superpool." The vesicles within t...
متن کاملSharing Vesicles Between Central Presynaptic Terminals: Implications for Synaptic Function
Presynaptic terminals in hippocampal neurons house functionally distinct vesicle pools, the size, structure and biochemical features of which are major determinants of presynaptic strength and performance. In classical models of synaptic function these vesicle pools are synapse-specific, but accumulating evidence is now demonstrating that some vesicles are laterally mobile along axons and readi...
متن کاملMunc13 controls the location and efficiency of dense-core vesicle release in neurons
Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In m...
متن کاملImaging phluorin-based probes at hippocampal synapses.
Accurate measurement of synaptic vesicle exocytosis and endocytosis is crucial to understanding the molecular basis of synaptic transmission. The fusion of a pH-sensitive green fluorescent protein (pHluorin) to various synaptic vesicle proteins has allowed the study of synaptic vesicle recycling in real time. Two such probes, synaptopHluorin and sypHy, have been imaged at synapses of hippocampa...
متن کاملImpaired synaptic vesicle recycling contributes to presynaptic dysfunction in lipoprotein lipase-deficient mice.
Lipoprotein lipase (LPL) is expressed at high levels in hippocampal neurons, although its function is unclear. We previously reported that LPL-deficient mice have learning and memory impairment and fewer synaptic vesicles in hippocampal neurons, but properties of synaptic activity in LPL-deficient neurons remain unexplored. In this study, we found reduced frequency of miniature excitatory posts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature communications
دوره 2 شماره
صفحات -
تاریخ انتشار 2011